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ABSTRACT: The boundary face method based on the Burton-Miller equation is applied in this 
paper to solve radiation and scattering problem of acoustic waves. The present method is referred 
to as CHBFM. In the CHBFM, the boundary integration and fi eld variables approximation are 
both performed in the parametric space of each boundary face exactly the same as the B-rep data 
structure in standard solid modelling packages. The geometric data, such as coordinates and the 
outward normals at Gaussian integration points are calculated directly from the faces rather than 
from element interpolation, thus the geometric errors are avoided. The CHBFM has been integrated 
into the widely used commercial CAD package UG-NX, and thus able to handle problems with 
complicated geometries. Numerical examples were presented to illustrate the accuracy and validity 
of the CHBFM. The results have shown that our method has better accuracy than the traditional 
method with almost the same CPU time when using the same number of elements. In addition, the 
CAD models, even with complicated geometry, are directly converted into the CHBFM models, 
thus the present method provides a new way toward automatic simulation.
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1  INTRODUCTION

For the acoustic problem governed by Helmholtz 
equation, the first effort of using the integral 
equation was made by Jawson & Symm (1963). Chen 
& Schweikert (1963) solved 3D sound radiation 
problems by using Fredholm integral equation of 
the second kind. Chertock (1964) predicted sound 
radiation from vibrating surfaces using integral 
equation. However, there is a drawback that only 
using CBIE formulation cannot get unique solution 
for the exterior acoustic problems governed by 
the Helmholtz equation at the eigen-frequencies 

which are associated with the interior problems 

(Schenck, 1968; Kleinman & Roach, 1974). These 

eigen-frequencies, which are called fi ctitious eigen-

frequencies, have no physical signifi cance for the 

exterior problems under investigation. In order 

to deal with this defect, two major methods have 

been applied to circumvent this problem. One is the 

combined Helmholtz integral equation formulation 

(CHIEF), which was proposed by Schenck (1968). 

In that method, some additional Helmholtz integral 

relations were added in the interior domain. This 

additional relation leads to an over-determined 

system of equations, which can be solved using a 

least-squares technique. CHIEF has been widely 

used for acoustic scattering and radiation problems. 

Furthermore, lots of improvements have been made 

by several researchers (Seybert & Rengarajan, 1987; 

Wu & Seybert, 1991; Segalman & Lobitz, 1992; 

Benthien & Schenck, 1997). The main diffi culty in this 
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method, however, is a suitable choice of number and 
positions of the interior points. 

The other method to circumvent the non-uniqueness 
problem at characteristic frequencies was proposed 
by Burton & Miller (1971). In this method, a complex 
linear combination of the CBIE and hyper-singular 
boundary integral equation (HBIE) for only the 
exterior domain is employed. This method was 
proved to yield a unique solution effi ciently for 
all the frequencies if the imaginary part of the 
coupling constant of the two equations is non-zero. 
However, the most diffi cult part in implementing 
this composite formulation is calculating the hyper-
singular integral. Burton & Miller (1971) proposed 
a double surface integral method throughout the 
integral equation to reduce the order of hyper-
singularity. Chien et al (1990) used some identities 
in the integral equation related to an interior Laplace 
problem to reduce the order of kernel singularity. 
Based on the three integral identities for the static 
Green’s function which were proposed by Liu & 
Rudolphi (1991), a weakly singular form of the 
hyper-singular integral equations was presented by 
Liu & Rizzo (1992) and Liu & Chen (1999). In those 
works, the hyper-singular integral is calculated by 
subtracting a two-term Taylor series from the density 
function. Certain integral identities of static Green’s 
function were used to assess the added-back terms. In 
the weakly integral form of the HBIE, all the integrals 
are at most weakly integral. Thus the ordinary 
numerical integration scheme can be applied. 
Rudolphi (1991) obtained a regularised form by 
using the rigid body and linear displacement modes. 
Guiggiani (1998) computed the hyper-singular 
integral directly in the Hadamard-fi nite-part sense. 
There are also some other efforts on this aspect have 
been made for acoustic problems (Meyer et al, 1979; 
Lee & Sclavounos, 1989; Liu & Rudolphi, 1999; Li & 
Huang, 2010; Matsumoto et al, 2010). 

All the above mentioned works were performed in 
boundary element method (BEM) frame. In BEM, 
however, the curved surfaces are approximated 
through boundary elements. In other words, the 
calculated geometric curved surface is different from 
the real one. A large number of elements should 
usually be employed to get an accurate result in 
BEM. To circumvent this problem, the boundary face 
method (BFM) was proposed by Zhang et al (2009). 
The BFM based on the boundary integral equation 
(BIE) is also a numerical approach for solving fi eld 
problems, and it is implemented directly using the 
boundary representation (B-rep) data structure 
that is used in most CAD packages for geometry 
modelling. In BFM, both boundary integration and 
interpolation of fi eld variables are performed in 
the parametric space of each boundary face. The 
geometric data at Gaussian integration points, such 
as the coordinates, the Jacobians and the outward 
normals are calculated directly from the faces rather 
than from element interpolation. Thus the geometric 

errors are avoided. Qin et al (2010) implemented the 
BFM using fi nite elements defi ned in the parametric 
space of boundary faces, which can be considered as 
a new implementation of the BEM. Gu et al (2011) 
applied the BFM to solve linear elasticity problems 
using B-spline element interpolation. Zhou et al 
(2011) combined the dual reciprocity method and the 
BFM to solve non-homogeneous potential problems. 
Other applications of BFM can be found in Zhang 
(2010) and Gu et al (2012).

In this paper, the BFM is implemented based on 
the Burton-Miller equation to solve the radiation 
and scattering problems of the acoustic wave. In 
this implementation, the constant elements are 
employed. CAD software UG-NX is employed 
for the geometric design. The paper is organised 
as follows. Section 2 mainly reviews the BIE for the 
acoustic wave problems used in this paper. In section 
3, the BFM for the BIEs of acoustic wave problems is 
described followed by several numerical examples 
in section 4. The paper ends with conclusions and 
discussions on future work in section 5.

2 REVIEW TO THE FORMULATION
OF ACOUSTIC WAVE PROBLEMS

In 2D or 3D spaces, the governing equation for 
acoustic wave problem is the Helmholtz equation 
which can be written as:

2(x) + k2(x) = 0,  x  E (1)

in which x is the field point; E is the acoustic 
domain; (x) denotes the total sound pressure at x; 

2 2 2
2

2 2 2
1 2 3x x x

 denotes the Laplace operator, 

where x
1
, x

2
 and x

3
 are the coordinates; k = 2f/c  

denotes the wave number; f is the cyclic frequency; 
and c is the speed of sound in the acoustic medium. 

The boundary conditions for the governing equation 
of acoustic wave problems can be described as:

 Dirichlet type ,

Neumann type ,

Impedance type ,

u

n q

n z

x S

q q ikc v x S
n
Zv x S

  (2)

where  denotes the circular frequency;  is the mass 
density; vn is the normal velocity; n is the outward 
normal; Z denotes the specifi c acoustic impedance; 

1i ; and the quantities with overbars indicate 
given values. For the exterior acoustic problem, the 
Sommerfeld radiation condition must be satisfi ed at 
infi nite fi eld. It is:

lim 0
R

R ik
R

  (3)

where R is the distance from a fi xed origin to a 
general fi eld point; and  is the radiated wave in 
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a radiation problem or the scattered wave in a 
scattering problem.

The integral representation of the solution to the 
Helmholtz equation is: 

0 0 0

0
0

( ) ( ) ( , ) ( ) ( )

( , )
( ) ( ) ( )

S

I

S

c P P G P P q P S P

G P P
P dS P P

n

  (4)

here G(P
0
, P) = eikr/4r denotes the full space Green’s 

function of Helmholtz problems, in which r = |P 
– P

0
| is the distance between source point P

0
 and 

fi led point P; q(P) = (P)/ n; and I(P
0
) denotes a 

prescribed incident wave but it does not exist in 
radiation problems. Coeffi cient c(P

0
) is described as:

0

0 0

0

1,
1

( ) ,
2
0,

P E

c P P S

P B

  (5)

where E is the exterior region (acoustic medium); 
S denotes the boundary which is smooth around 
P

0
; and B is the interior region (a body or scatterer). 

Equation (4) with P
0
  S is the commonly used form 

of the conventional BIE for acoustic wave problems. 

To derive the HBIE, we take the derivative of 
equatoin (4) with respect to the outward normal n

0
 

at source point P
0
. The following BIE is given:

0 0
0

0 0

2
0 0

0
0 0

( ) ( , ) ( )
( ) ( )

( , ) ( )
                    ( ) ( ) ,

S

I

S

P G P P P
c P dS P

n n n

G P P P
P dS P P S

n n n   
(6)

here c(P
0
) is 1/2 if S is smooth around the source 

point P
0
. As we all know, equation (6) is a hyper-

singular integral equation (integrand has a 1/r3 
singularity). Thus the main problem in application of 
this integral equation is how to calculate the hyper-
singular integral accurately. Many regularisation and 
weakly singular integral forms have been proposed 
to calculate this integral effi ciently, which has been 
introduced in the previous section. In this paper, we 
employ the weakly singular integral form proposed 
by Liu & Chen (1999). 

By employing the above formula, all the hyper-
singular integral or strong singular integral (integrand 
has a 1/r3 singularity) in the BIE have been converted 
into weakly singular integral forms which can be 
calculated directly. 

We both convert the BIE and HBIE to their weakly 
singular form. Then we apply the well-known 
Burton-Miller equation with a coupling constant . 
A weakly singular formed Burton-Miller formulation 
as follow can be obtained by (Liu & Rizzo, 1992; Liu 
& Chen, 1999):

CBIE + HBIE (7)

 = i/k is used as the imaginary coupling parameter 
of the Burton-Miller’s formulation (Seybert et al, 
1985), and k is the wave number. 

3 THE CHBFM FOR THE
ACOUSTIC WAVE PROBLEMS

As in the BEM, only the boundary discretisation 
is required in the BFM based on the Burton-Miller 
equation (CHBFM) for solving acoustic wave 
problems. One of the essential differences between 
BFM and BEM is that boundary elements are built in 
different spaces, namely, elements used in BFM are 
located in the two-dimensional parametric space of 
the bounding surface, while in the BEM elements 
are located in the three-dimensional physical space. 
In the BFM, the geometric data over the elements 
are calculated directly from the surfaces using the 
following map F:

1 2 1 2 1 2 1 2

1 2

( , , ) ( ( , ), ( , ), ( , )) ( , )

, , ,   ,

f x y z f x t t y t t z t t f t t

x y z t t
  (8)

where f is the geometric map function of the 
parametric space to physical surface; t

1
 and t

2
 are the 

parametric coordinates which are constrained to the 
interval [0,1] mostly;  is the physical space; and  
is the parametric space corresponding to . Through 
the geometric map F, the outward normals at the 
locations on the boundary, the shape functions and 
its derivatives can be constructed in the parametric 
space . The detailed description and integration 
scheme can be found in Qin et al (2010).

To clearly show the differences of the discretisation 
between the BFM and BEM, their boundary meshes 
on the same cylinder are shown in fi gure 1. The 
elements in BFM (fi gure 1(a)) keep exact geometry, 
while the elements in BEM are used to approximate 
the geometry of the cylinder, thus introduces 
geometric errors. The geometric errors may lead 
to accuracy loss, whic h will be illustrated in the 
numerical examples in section 4. 

By dividing the boundary S into L elements and 
applying the shape functions on the element, we 
have the following approximations for variation of 
pressure and velocity:

1 2
1 1

( ) ( ) ( , )
L L

k k k k
k k

P N P N t t   (9)

1 2
1 1

( ) ( ) ( , )
L L

k k k k
k k

q P N P q N t t q   (10)

where k and qk denote the value of  and q at the kth 
node, respectively; and Nk(.) is the shape function 
associated with the kth node. If the constant elements 

are used, we have Nk(.) = 1 and 0( ) 0P
t

 ( = 1, 2). 

We substitute equations (9) and (10) into (7) and the 
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following discretised form can be obtained as in 

equation (11), below, in which P
0
i denotes the node i.

The outward normal is depicted as:

1 21 2 1 2
1 2

( , ) ( , )
( , ) t tr t t r t t
n t t

J
  (12)

where 
1 1 2( , )tr t t  and 

2 1 2( , )tr t t  are tangent vectors at 

the point over the surface, and the two vectors are 

defi ned as:
 

1

1 21 2 1 2 1 2
1 2

1 1 1 1

( , )( , ) ( , ) ( , )
( , ) , ,t

y t tr t t x t t z t t
r t t

t t t t
  (13)

2

1 21 2 1 2 1 2
1 2

2 2 2 2

( , )( , ) ( , ) ( , )
( , ) , ,t

y t tr t t x t t z t t
r t t

t t t t
  (14)

1 21 2 1 2( , ) ( , )t tJ r t t r t t  is the Jacobian of the geometric 

map F. In BFM, the normal n(t
1
, t

2
) and Jacobian J are 

directly computed from parametric surface rather 

than from approximation elements as in BEM. 

Through section 2 we know that all the integrals 

in equation (11) have been converted into weakly 

  

Fig ure 1: Two types of boundary
discretisations – (a) BFM elements
and (b) BEM elements.
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singular integral forms which can be calculated 
through the elements directly. The weakly singular 
treatments in this paper are the same as those in 
BFM potential analysis. Since each surface element 
employed in BFM is defi ned in the parametric space 

, the integrand quantities for each integration 
point in the physical space  can be derived from 
corresponding parametric surface  by the geometric 
map F, keeping geometric data exact. 

Considering the boundary conditions, equation (11) 
can be put in the following matrix form: 

Ax = b (15)

where b is the known vector, x is an unknown vector 
to be computed and A is the system matrix. 

4 NUMERICAL EXAMPLES

The CHBFM has been implemented in a code written 
in C++ and tested with radiation and scattering 
problems on three different geometries. 

The relative error is defi ned as following form: 

1max

1 1
( )

n
a r
i i

i

error
N

  (16)

where N is the number of the node points; i
a and 

i
r are analytical solution and numerical solution at 

node point i, respectively; and ||
max

 is the maximum 
value among the analytical solutions.

4.1 Radiation problems on a cylinder 

We start numerical examples with radiation problem 
on a cylinder domain (fi gure 2) to verify the accuracy 
and effi ciency of the CHBFM. The radius a of this 
cylinder is 1, and the length is 5. To get comparative 
results, the BEM based on the Burton-Miller equation 
(CHBEM) has also been implemented in code 
with C++. The pulsating cylinder is formulated by 
prescribing the normal velocity on a cylinder surface 
produced by a pulsating sphere with radius of 1. The 
pulsating sphere is circumscribed by the cylinder. 
Thus the boundary condition prescribed on the 
cylinder surface is given as:
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( )r
q

n
   (17)

where (r) is the sound pressure potential obtained 
by the pulsating sphere. (r) is expressed as the 
following simple form:

( )

( )
ik r ae

r
r

   (18)

This example is similar to one illustrated example by 
Seybert et al (1985). The relative errors of nodal values 
of sound pressure obtained by the CHBFM and the 
CHBEM are shown in fi gure 3. The comparative 
results show that the CHBFM has higher accurate 
results than CHBEM at the same number of elements, 
regardless of the wave number k = 1 or  (this is 
a fictitious eigen-frequency for the CBIE). The 
problem with fi ctitious frequencies for the CBIE has 
been circumvented (k = ). Figure 4 shows the total 
CPU time of each testing case. From this fi gure, we 
clearly found that the CPU time used in the CHBFM 
is almost the same as that of the CHBEM. This 
numerical example demonstrated that the CHBFM 
can effectively and accurately solve the radiation 
problems. The CHBFM out-performs CHBEM on 
accuracy at the same element number with almost 
the same CPU time. 

4.2 Scattering problem on a sphere 

A rigid sphere model (fi gure 5) with radius a = 1 is 
employed here to verify the CHBFM for scattering 
problems. The sphere is impinged upon by a 
unit incoming plane wave in the x direction. The 
analytical solution for the scattered potential at a 
distance r from the sphere center and at an angle  
from the direction of the incoming wave is given by 
(Hickling & Wang, 1966):

0

(2 1) ( )
( , ) (cos ) ( )

( )

m
s m

m m
m m

i m j ' ka
r P h kr

h ' ka
   (19) 

Fig ure 2: A cylinder model with 972 constant elements.

Fig ure 3: The relative errors of nodal values by 
the CHBFM and the CHBEM.

Fig ure 4: The CPU time used in the CHBEM 
and the CHBFM.

where Pm is the Legendre function of the fi rst kind; 
hm denotes the spherical Hankel function of the fi rst 
kind; and jm is the spherical Bessel function of the 
fi rst kind. Figure 6 shows the variation of || at a 
radius 4a which is plotted versus the polar angle  
when ka = 1.0. The results are obtained the CHBFM 
using 136 constant elements. The relative error of the 
points is 0.04381%. Figure 6 illustrates the computed 
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Fig ure 5: A sphere model with 136
constant elements.

Fig ure 6: The sound pressure versus polar angle.

x

y

z

x

y

z

x

y

z

Fig ure 7: A complex engineering model with 6236 elements.

pressures are much coincide with the analytical 
solutions. This example has demonstrated that 
present method can effectively and accurately solve 
the scattering problems. 

4.3 Radiation problem on a
complex engineering model 

The fi nal example considers the radiation of acoustic 
wave from an engineering model (fi gure 7), which is 
represented with B-rep data structure obtained from 
the commercial CAD software UG-NX. The overall 
dimensions of the model are [–0.704, 0.4195]×[–0.444, 
0.444]×[–0008, 0.508] in physical space. The boundary 
condition for the model is a uniform normal velocity 
v

0
 = 1.0 on the model surface, and / n = ikcv

0
 with 

k = 1. The total 6236 elements are used to discretise 
all surfaces of the model. The evaluation points with 
total number of 189 are distributed on the sphere 
surface with radius of 1.0 centred at (0, 0, 0.3). Figure 
8 shows the computed sound pressure distribution 
of this fi eld surface. This example demonstrates that 
the integration of the CHBFM with the UG-NX is 
successful, and the CHBFM can effectively analyse 
the models with complicated geometry.

5 CONCLUSION AND FUTURE WORK

The BFM has been implemented with surface 
elements on the geometry directly based on the CBIE 

Fig ure 8: Computed sound pressure 
distribution on the field surface for 
the engineering model.
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and HBIE to the radiation and scattering problems 
of acoustic wave. In the CHBFM, we only need the 
parameter discretisation of all the boundary surfaces, 
all the boundary integration and interpolation of the 
fi eld variables are performed in the parametric space 
of each boundary face. Thus the geometric errors can 
be avoided. The CHBFM provides a natural way to 
integrate geometric design and engineering analysis 
into a completely unifi ed framework.

In this paper, we employed the parametric constant 
elements. The numerical examples demonstrated 
that CHBFM obtained results with better accuracy 
when compared with the CHBEM. What is more, in 
the CHBFM all computations are performed directly 
on the original CAD models, even with complicated 
geometry. 

Application the BFM analysing the models with 
microscopic characteristics also is a meaningful work. 
Coupling with fast multi-pole method (Zhang et al, 
2005; Shen & Liu, 2007a; 2007b), the BFM can perform 
large-scale computations for more complicated 
structures, which is an ongoing work of our research. 
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